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 Abstract – Although substantial research has explored the 
design of artificial swarms, the majority of such work involves 
swarms of autonomous robots or simulated agents. Little work, 
however, has been done on the creation of artificial swarms that 
connect groups of networked humans with the objective of 
fostering a unified emergent intelligence. This paper describes a 
novel platform called UNU that enables distributed populations 
of networked users to congregate online in real-time swarms 
and tackle problems as an Artificial Swarm Intelligence (ASI). 
Modeled after biological swarms, the UNU platform enables 
online groups to work together in synchrony, forging a unified 
dynamic system that can quickly answer questions and make 
decisions by exploring a decision-space and converging on a 
preferred solution. Initial testing suggests that human swarming 
has great potential for unleashing the collective intelligence of 
online groups, often exceeding individual abilities. 
 
 

I.  INTRODUCTION 

A wide variety of methods have been used by researchers 
to tap into the collective intelligence of human populations, 
from polls and surveys to prediction markets. These methods 
have one central feature in common – individual participants 
provide input in isolation, their contributions aggregated after-
the-fact with the input from others. Lacking connectivity, the 
participants of polls, surveys, and markets can hardly be said 
to comprise a unified collective intelligence, for each user 
works separately, having no interaction with others members 
of the group. As a result, polling methods are effective at 
exposing an “average sentiment” that characterizes a 
population, but they lack the structure needed for a real-time 
collective intelligence to emerge from the population.  
 To make matters worse, collective intelligence methods 
that do allow users to influence each other, generally do so 
asynchronously. For example, online forums like Reddit and 
Digg allow popular content to rise and fall with sequential up-
voting and down-voting. Similarly, prediction markets allow 
commoditized content to rise and fall with sequential buys and 
sells. While these methods are more interactive than typical 
polls and surveys, the asynchronous nature means that each 
user influences the opinions of those who follow them in time. 
Recent studies show that this type asynchrony greatly distorts 
group-wise decisions by introducing social biasing effects 
known as herding or snowballing. One such study [1] found 
that a single up-vote, when inserted first into an online forum, 
influenced the final decision of the group by more than 25%. 
Similarly, prediction markets suffer from momentum effects, 
price bubbles, risk-eversion biases, and over-corrections as a 
consequence of asynchrony [2]. 

 Still, polls, surveys, and markets are extremely valuable for 
revealing the average sentiments held by groups, but that’s not 
the same as enabling groups to think together as a unified 
system. To foster a true collective intelligence among a large 
numbers of individuals, we look to biology and the process of 
swarming. The parallel structure of natural swarms inherently 
limits social biasing effects such as snowballing, which arise 
from sequential voting, while enabling large groups to pursue 
a common goal as single unified system. In the sections 
below, a novel platform called UNU is described that was 
developed to enable and study human swarming. 
 

II. SWARMS AS DISTRIBUTED BRAINS 
 
 Before describing the technical details of human swarming, 
it’s useful to define the word “swarm” in the context of the 
current work. Many researchers use “swarm” to refer to 
decentralized networks of robotic or simulated agents with 
simple localized rules, such that a collective intelligence 
emerges from the local interactions among them [3]. These 
systems are generally inspired by flocks of birds and schools 
of fish, which are known to traverse complex environments 
using similar processes. While these types of systems have 
many useful applications, the swarms employed by the UNU 
platform are modeled less after the behavior of flocks and 
schools, and more after the decentralized decision-making 
processes used by honeybee swarms. This model was chosen 
because the emergent decision-making process of honeybees 
provides a powerful agent-based analog for how neurological 
brains arrive at complex decisions. This supports the primary 
goal of the UNU platform, which is to enable groups of 
networked users to make complex and nuanced decisions as a 
unified intelligence – i.e., as a brain of brains.    
   As studied by Seeley et al., the decision-making processes 
performed by honeybee swarms and neurological brains are 
remarkably similar in many ways [4]-[8]. Both employ large 
populations of simple excitable units (i.e., bees and neurons) 
that work in parallel to integrate noisy evidence, weigh 
competing alternatives, and converge on a singular decision. 
In both, the final decision is arrived at through a real-time 
closed-loop competition among sub-populations of distributed 
excitable units, with each sub-population vying for a different 
alternative. When one sub-population exceeds a threshold of 
level support with respect to the other sub-populations, the 
corresponding alternative is chosen. The threshold for 
reaching a decision in both brains and honeybee swarms is not 
the unanimous excitation of units, or even a simple majority, 
but often just a sufficient quorum of excitation [8].  



 

 

Within neurological brains, integrator neurons act to sum 
the activation among supportive units while inhibiting the 
activation of competing units. This combination of activation 
and inhibition helps avoid deadlocks and promote optimal 
decisions. Honeybee swarms have been observed to perform 
similar combinations of activation and inhibition to similarly 
avoid deadlocks and optimize decisions [4,8]. For example, 
every spring honeybee swarms make a complex collective 
decision to select a suitable location for settling a new colony. 
This life-or-death choice is made by a few hundred of the 
oldest bees in the swarm – the scout bees. After searching a 
large area, these scouts bring alternatives back to the swarm, 
each of them working to influence the collective decision of 
the group through body vibrations. Referred to as a “waggle 
dance”, these vibrations encode the direction and distance to 
possible colony sites. In addition, these dances can encode 
“stop signals” that inhibit other dancers. This enables closed-
loop feedback control with both excitation and inhibition. 

Thus, just like networked neurons, swarming honeybees 
comprise a closed-loop dynamic system of distributed units 
working in parallel, each individual bee supporting those that 
favor a similar alternative, while inhibiting those that promote 
a differing alternative. The decision is reached when a 
sufficient quorum emerges for the chosen alternative. In this 
way, a collective intelligence comprised of a few hundred 
honeybees is able to select among dozens of possible colony 
sites spread over 30 square miles, evaluating each with respect 
to multiple criteria. Remarkably, the bees usually arrive at the 
decision that best satisfies their needs [9]. This is because the 
decision is not produced at by a simple vote, which would 
favor the most popular answer, but instead through a real-time 
negotiation in which many options are considered in parallel, 
the participants pushing and pulling in synchrony until a 
solution emerges that optimizes group satisfaction. It is this 
distributed emergent process that the UNU platform aims to 
enable among groups of networked human users.   

 
III. ENABLING HUMAN SWARMS 

 
To harness the collective intelligence of online groups, a 

human swarming platform known as UNU was developed. 
Modeled after the decision-making processes of honeybee 
swarms and neurological brains, the UNU platform enables 
groups of networked users to answer questions as a unified 
dynamic system. And like natural the analogs, these artificial 
human swarms were designed to allow large numbers of 
participants to work together in real-time to (a) integrate noisy 
evidence, (b) weigh competing alternatives, and (c) converge 
on final decisions through a synchronous competition among 
multiple sub-populations.  

Because we humans can’t waggle dance like honeybees or 
produce activation signals like neurons, a novel user interface 
had to be developed to allow participants to convey the unique 
direction and magnitude of their own personal intent with 
respect to a set of alternatives. In addition, the interface had to 
be crafted to allow user to perceive and react to the changing 
system in real-time, thereby closing a feedback loop around 
the full group. Simply put, the connective infrastructure for 
swarm-based decision making, which evolved over millions 
of years in honeybees, had to be enabled artificially for human 
users by designing a specialized software interface. 

System Design: the platform allows large numbers of 
distributed users to login to a central server from their own 
local PC or tablet. At the start of each decision, all participants 
are simultaneously presented with a question along with a set 
of possible answers. The swarm of users answers the question 
by collaboratively moving a graphical puck to select among 
the provided alternatives. Each alternative is displayed as a 
graphical target positioned equidistant from the starting 
location of the puck. The puck is modeled as a physical 
system with a defined mass, damping and friction. Each user 
provides input with a graphical magnet controlled by their 
mouse or touchscreen. By positioning their magnet relative to 
the puck, each user can impart his or her own personal intent 
as a unique force to be applied to the puck (Fig. 1). Each 
user’s unique input is referred to as a User Intent Vector. 
 

   

 

 

 
 
 
 

 
 
 
 

Fig 1. A human swarm comprised of user-controlled magnets collaborate 
in synchrony to move a graphical puck as a unified collective intelligence. 

 
The input from each user is not a discrete vote or bid, but a 

continuous stream of vectors that can vary freely over the 
decision process. Because the full population of users can 
adjust their intent at every time-step during the decision, the 
puck moves, not based on the input of any individual, but 
based on the dynamics of the full system. This results in a 
real-time physical negotiation among the members of the 
swarm. With everyone pushing and pulling at the same time, 
the group collectively explores the decision-space and 
converges upon the most agreeable answer.  

It should be noted that users can only see their own magnet 
during the decision process, but cannot see the magnets of 
others users. Thus, although participants can view the puck’s 
motion in real time, which represents the emerging will of the 
swarm, they are not influenced by the specific breakdown of 
support across options. This inherently limits social biasing. 
For example, if the puck slows due to an emerging deadlock, 
the participants must evaluate their own willingness to shift 
support to alternate options without knowing the distribution 
of support that caused the deadlock. This promotes honest 
introspection rather than reflexive support of large factions. It 
should also be noted that after each decision is over, users can 
view a replay that shows all the magnets. This allows users to 
reflect on how their personal contribution combined with 
others to produce the final answer that emerged. 

It should also be noted that although the participants in 
natural swarms contribute in real-time, it takes finite time for 
information to propagate across members. In the artificial 

http://unanimousai.com/wp-content/uploads/2015/01/unum_swarm.jpg
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human swarms herein, the momentum of the puck, as defined 
by a mass parameter, enables a time-constant for information 
propagation. It has been observed that without momentum, 
convergence on decisions is hindered. We believe momentum 
acts as low-pass filter, removing noise (i.e. jitter) from the 
collective motion of the puck, which is likely a consequence 
of participants reacting to changes at slightly different rates.    

In Fig. 2 below, an example question is shown as it would 
appear simultaneously on the screens of all users in the 
swarm. In this particular trial, a swarm of 90 users was asked 
to grapple with a politically charged question likely to inspire 
diverse opinions: ñWhat should be Congressôs top priority?ò 
This was presented along with six answer options. The 
choices can be supplied by the asker of the question or, when 
using ñsuggestion modeò, can be provided by members of the 
swarm. Allowing members of the swarm to provide the 
answer options mimics the process of scout bees, which are 
known to supply destination options for their colony. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. A replay snapshot of a human swarm answering a question. 

 
After the question and choices are displayed to all members 

of the swarm, the puck appears at the center of the screen. 
Users are then given a 3,2,1 countdown to coordinate the start 
of the session. The swarm quickly springs into action, 
working in synchrony to guide the puck to a preferred answer. 
The decision process is generally a complex negotiation, with 
individuals shifting their support numerous times to break 
deadlocks or defend against options they disfavor. When a 
user pulls towards one option in the answer set, a component 
of their force also acts to impede the motion of the puck 
towards competing options. In this way, users don’t only add 
support a preferred solution when pulling towards it, but also 
suppress solutions they don’t prefer. This enables the dual 
process seen in natural swarms and neurological brains 
wherein individual agents are enabled to both excite and 
inhibit [4], thereby reducing the chances of a deadlock.  

Over the past 18 months, hundreds of human swarms have 
been observed answering thousands of questions in this way 
[10,11]. If a group happens to be in substantial agreement 
from the start of the question, favoring one option strongly 
over all the others, the puck moves smoothly to that answer. 
But, if two or more options have significant support – as is 

true of most questions worth posing to a group – the swarm 
performs a complex negotiation as a unified system, with 
individual users often changing their strategy multiple times 
during the decision. Most users begin by pulling towards the 
option they prefer most, but adjust if the puck starts moving 
towards an option they greatly dislike, shifting the angle of 
their input so it changes from pulling towards a preferred 
option to defending against a disliked option, and then 
adjusting again to pull toward their preference. With all users 
making such dynamic changes in parallel, the swarm explores 
the decision space until it converges on an answer that 
optimizes the collective satisfaction of the full population. 

It’s important to note that users don’t just vary the direction 
of their input in real-time, but also the magnitude. The closer a 
user positions their magnet to the puck the stronger it pulls, as 
a real magnet would behave. Because the puck is always in 
motion, users need to continually move their magnet so that it 
stays close to the puck. This is significant, for it requires all 
users to be actively engaged during the real-time decision 
process. If they stop adjusting their magnet to the changing 
position of puck, the distance grows and their applied force 
wanes. Thus, just like bees executing a waggle dance or 
neurons firing activation signals, the networked users in an 
artificial human swarm must continuously express their 
changing preferences throughout the decision process or lose 
their influence over the final outcome. 

Post testing interviews with participants suggest that the 
requirement that all users provide continuous and active 
influence on the puck is quite significant. Users with high 
conviction in favor of an outcome report being more vigilant 
in maintaining maximum force on the puck over time. 
Conversely, users who have lower conviction (because they 
are torn between multiple options or because they know they 
lack information about some options) report being less 
vigilant in maintaining maximum force over time. In this way, 
the swarming interface allows users to express their changing 
support during a collective decision, not just by indicating the 
direction of support but also by expressing a unique level of 
conviction. In addition, users report that when torn or 
ambivalent, they tend to be more flexible in shifting support to 
avoid deadlocks than if they have strong conviction in favor 
of a particular outcome. We believe this dynamic allows the 
swarming process to optimize the overall satisfaction of the 
group with consideration of their varying levels of conviction. 

Observations and post-testing interviews also reveal that 
human swarming yields consistent outcomes regardless of the 
spatial placement of answer options. For example, if two 
highly favored options are placed on opposite sides of the 
puck’s starting position, the swarm will fall into an early 
deadlock as it grapples between them. Conversely, if the two 
highly favored options are placed on the same side of the 
puck’s starting positon, the swarm will not fall into an early 
deadlock, but instead move the puck towards those two highly 
favored options. Still, a deadlock will emerge as the puck 
approaches midpoint between the two favored options. In this 
way, the swarm explores the decision space, which can have 
alternate layouts, but arrives at the same outcome. A similar 
robustness has been observed in honeybee swarms, which are 
known to decide upon optimal nesting locations regardless of 
the order in which candidate sites are discovered and reported 
by scout bees [9].   



 

 

Referring again to Fig. 2, the default layout used by the 
platform is a set of six alternatives in a hexagon pattern. The 
hexagonal configuration was chosen because according to 
social-science research, people are efficient decision-makers 
when presented with up to six options, but suffer from 
increasing “choice-overload” inefficiencies when confronted 
with larger sets [12]. To enable swarms to consider larger sets 
of answers, the system employs an iterative approach, 
presenting users with a series of six-option subsets of the full 
answer pool, then pitting the winner of each subset against 
each other. This allows a final answer to emerge from a large 
set of options. The one exception are answers that fall on a 
continuum, for example when selecting a value from 0 to 
1,000. To support such questions, the platform allows users to 
position the puck on a continuous scale. This enables swarms 
to collectively decide upon quantities, prices, percentages, 
odds and other numerical values within pre-defined ranges.  

An example of a scale-based question is shown in Fig. 3. In 
this example, a swarm of users was asked to decide upon the 
fair price of a movie ticket on a scale from $0 to $25. When 
using this type of layout, the puck starts at the center of the 
scale and can be moved smoothly in either direction. In these 
types of collective decisions, the swarm generally overshoots 
the final answer, then reverses the direction of the puck, 
oscillating in narrower and narrower bands as all the users 
adjust their pulls in parallel. An answer is chosen from the 
continuous range when the puck settles upon value for more 
than a threshold amount of time (e.g., 3 seconds). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig 3. A sample scale-based layout for human swarming 

 
Time Pressure: whether selecting from a set of discrete 

choices or from a continuous scale, each swarm of users are 
given a time limit of 60 seconds to arrive at an answer. After 
this time, the decision process ends, deemed a failed attempt. 
This time pressure was implemented for two reasons. First, it 
imparts a Prisoner’s Dilemma upon the group as time runs 
out, driving individuals to be less entrenched in the support of 
answers that seem unlikely to be agreed upon. The objective is 
to drive flexibility, increasing the chance that the swarm will 
converge on common ground. Second, social-science research 
indicates that people are more likely to express honest and 

selfless answers when responding under time pressure. 
Conversely, people are more likely to be influenced by pre-
held biases and selfish interests as time increases [13]. 
Because the goal of this swarming platform is to express the 
collective intelligence of a population, capturing honest and 
selfless input facilitates finding the true group intent.  
  Data Collection: to support research into human swarming, 
a database stores the User Intent Vectors for all members of 
the swarm at continuous time-steps across each decision. The 
vectors are stored every 0.25 seconds, starting from the 
moment the puck is free to move, and ending when an answer 
is chosen by the group. Although the raw data is very useful, 
of particular interest is the study of how sub-populations 
within the swarm form and dissolve, each vying for a favored 
alternative while inhibiting disfavored options. We refer to 
each sub-population as a faction and have developed a 
technique called “faction analysis” to track and visualize the 
dynamics of sub-populations during each decision process. 
This is a particularly useful for identifying if and when a 
sufficient quorum forms and if it lasts long enough to drive 
the puck to a collective decision. 

Referring to Fig. 4 below, a question is shown as it was 
presented to a group of voters in early 2015, just after a 
number of Republican candidates announced their intention to 
seek the presidential nomination. As is true of most political 
questions, this inspired a range of conflicting opinions. Still, 
by working together as a unified swarm, the group converged 
on “Jeb Bush” after only 31 seconds of deliberation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig 4. A human swarm selects among six presidential candidates. 

 
  While the final answer reveals the collective will of the 
swarm, it’s valuable to study how the decision was reached. In 
this case, the puck first rushed towards Marco Rubio, nearly 
selecting that option, but reversed course as defending 
factions came together and pulled the puck away. Such 
behavior is common in swarm-based decisions, resulting from 
users changing their strategy as the puck nears a choice they 
dislike. With all users making such changes in parallel, a 
complex negotiation results by which a preferred solution is 
converged upon by the full system. The faction analysis 
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shown in Fig. 5 provides a visual representation of the 
negotiation that yielded this particular decision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5. A sample Faction Analysis of a real-time swarm decision. 

 
In Fig. 5, each colored area on the radial plot represents the 

time-varying factional support for one of the six answer 
options. The plot is read clockwise from the start of the 
question (t = 0 sec) until the answer is reached (t = 31 sec). 
The radial height of each colored area represents the total 
force applied by swarm participants pulling towards that 
particular option at that particular moment in time. This 
unique representation makes it clear even at a glance that 
numerous factions formed and dissolved across the decision 
period, reflecting a complex negotiation within the swarm. 
    A good way to read a Faction Analysis plot is to begin at 
t = 0 sec and scan clockwise. Doing so, we see that a faction 
quickly formed in support of Marco Rubio. This is the green 
area labeled (a) in the plot. During this time, the puck moved 
quickly towards the Rubio option, almost selecting it. But, 
because this is a real-time dynamic system, the full population 
of users are effected by the decision as it forms. Thus as the 
swarm of users sees the puck approach that option in real-
time, those who were undecided often start pulling for an 
option, while others who may have been pulling towards 
alternate options, may change their strategy and defend 
against the emerging answer. Post-session interviews suggest 
that the swarming process has the unique benefit of 
encouraging participants to confront their true feelings as they 
see possible outcomes emerge before their eyes. For example, 
they might not have realized how strongly they felt for or 
against the Rubio option until they witnessed it emerging 
before them.  
     As soon as the puck started moving away from Rubio, 
the factional support represented by the green area (a) on the 
plot, quickly dissolved, and was followed by a period of 
negotiation and deadlock (t= 2 to t=13), during which time no 
clear faction emerged.  As indicated by the green area (b), 
another faction appeared in support of Rubio at roughly 
t=13.5 seconds. Again the faction dissolved, and a new 
significant faction appeared at t=18, in support of Jeb Bush. 
The Jeb Bush faction maintained strength for the duration of 

the session and the puck reached the target and made the 
collective decision of “Jeb Bush”.  
     During post-testing interviews, participants generally 
express having substantial “buy in” with respect to the final 
answer, not necessarily because it aligns with their initial 
opinion, but because they actively participated in the process, 
having direct influence during the full decision period. They 
contrast this with polls where they often feel less 
consequential. To quantify these feelings, 48 college students 
who participated in swarms were given post-testing surveys. 
Despite the fact that each only controlled one magnet of 48 
that worked together to move the puck, only 4 of the 
respondents of the 48 disagreed with the statement ñI felt like 
a consequential member of the group.ò  Similarly, only 5 of 
the 48 respondents disagreed with the statement ñThe process 
motivated me to find common ground.ò This is encouraging 
feedback, suggesting that the process of human swarming is a 
positive experience for users.  

 

IV. PERFORMANCE TESTING 

To test the intelligence of human swarms, a set of pilot 
studies were conducted using the UNU platform. The first test 
enlisted a random group of users and asked them to make 
predictions on a verifiable event: the 2015 Academy Awards. 
The second test enlisted a group of random users and asked 
them to estimate the weight of a cow. In both tests, the results 
produced by the synchronous swarm were compared to an 
asynchronous baseline – a traditional online survey. Because 
polls and surveys are the most commonly used method for 
expressing “the wisdom of crowds”, these studies allowed us 
to compare asynchronous crowds with synchronous swarms.  

Prediction Study Setup: To test the ability of human 
swarms to make predictions, a group of users were asked to 
predict the winners of the 2015 Academy Awards [11]. A 
population of 48 individuals participated online, each filling 
out a traditional survey to predict the top 15 award categories. 
This provided baseline predictions for individuals working in 
isolation. To test swarming, a seven person sub-population of 
the full group was selected at random and instructed to make 
the same predictions as a swarm using the UNU platform. 
These individuals were networked over standard internet 
connections to a central server. The only interaction these 
individuals had with other members of the sub-population was 
through the swarming interface. Review of the poll results 
from these seven individuals confirm that they were typical 
performers on the written poll. 

Prediction Study Results: The poll results across the full 
baseline of 48 users revealed that individual respondents, on 
average, achieved 6 correct predictions across the top 15 
award categories (40% success). When looking at the most 
popular prediction across the population, as is the most 
common ñWisdom of Crowdsò method of data aggregation, 
the group achieved 7 correct predictions across the top 15 
award categories (47% success).  

When working as a unified swarm, the sub-population of 
seven individuals achieved 11 correct predictions across the 
top 15 award categories (73% success). In other words, a sub-
group that was only 15% the size of the full population had a 
success rate that was nearly double when working together as 
synchronous system. Furthermore, the unified swarm made 
more correct predictions than 47 of the 48 participants on the 



 

 

poll. This is a promising result and speaks to the potential for 
real-time swarming to harness the wisdom of online groups. 

As a point of reference, experts at the New York Times 
made similar predictions for the 2015 Academy Awards. 
These experts possessed far deeper knowledge than the novice 
members of our study. These experts likely also invested more 
than 60 seconds for each prediction made. Still, the New York 
Times Blog made predictions that yielded only 55% success.

1
 

In other words, a group of novices, working together as a 
human swarm, made predictions that surpassed industry 
experts. Although not conclusive, this pilot study suggests that 
human swarming may be a means of achieving expert-level 
insights from groups of non-experts. 

Estimation Study Setup: In 1906, Francis Galton ran the 
classic “Wisdom of Crowds” study at an English fair where 
farmers held a weight-judging contest for a large ox. A total 
of 787 people submitted their best guess of the weight. Galton 
computed the statistical average. It came out to 1,198 pounds. 
The actual weight was 1,197 pounds. While the vast majority 
of guesses were way off, the crowd’s statistical average was 
remarkably accurate. Over a century later, National Public 
Radio duplicated this classic study by asking their listeners to 
estimate the weight of a cow from a photo posted online.

2
 

This is a more difficult challenge, for a photo is harder to 
judge than direct viewing. They received 17,205 guesses. 
Because the photograph and massive set of data were made 
available by NPR, this modern study was chosen as a baseline 
for a comparison of estimations by crowds and swarms. 
   To assess the ability of human swarms to make intelligent 
estimations, a group of 49 users were selected at random and 
asked to view an online photograph of the cow used in the 
NPR study. They were then asked to predict the cow’s weight 
in pounds. Users first worked as individuals by entering their 
prediction into an online survey. Users were then asked to 
estimate the weight of the cow by working together as a 
swarm. This estimation was performed by users collectively 
moving the graphical puck first on a hexagon layout that 
provided six ranges of values, then on a continuous scale of 
values that allowed a fine selection to the nearest 5 lbs.  

Estimation Study Results: Looking first at the polling 
results, the statistical average of the 49 individual predictions 
made was 1,137 lbs. This was off by 16.1% from the true 
weight of the cow (1,355 lbs). Those same users, when 
working together as a human swarm, predicted the weight of 
the cow to be 1,250 lbs. This was off by only 7.7% from the 
true weight of the cow. In other words, the same set of users 
were more than twice as accurate when their predictions were 
made synchronously as a system as compared to their 
predictions made asynchronously as a statistical average. This 
supports the idea that synchronous human swarming can be 
more effective than asynchronous polling when harnessing the 
collective intelligence of groups. 
 As for the NPR study, they collected asynchronous data 
from an astonishing 17,205 users. The statistical average of 
their predictions was 1,287 pounds, only 5% off from the true 
weight of the cow. This poll result was more accurate than the 
human swarm, but the difference in predictions is surprisingly 
small considering the extreme difference in population size. 
The swarm of 49 users working in synchrony, produced an 
estimation that was only 37 pounds different than the 
prediction made by 17,205 polled respondents. This suggests 

that swarms are potentially more efficient than crowds, 
producing strong results with a fraction of the population size. 
Future studies are required to determine optimal swarm size. 

V. DISCUSSION AND CONCLUSIONS 

Are swarms smarter than crowds? The pilot studies suggest 
that although polling a large crowd is a powerful means for 
capturing the average views of a population, without real-time 
feedback control, polling cannot enable groups to explore a 
decision-space and find common ground. In fact, polling is 
generally “polarizing,” for by capturing the isolated opinions 
held by members of a group, polls and votes highlight the 
preexisting difference in a population while providing no 
direct means for bridging those differences. As a result, 
polling can foster entrenchment, even when the participants 
have flexibility among various options.  

Swarms, on the other hand, bring groups together, enabling 
all the participants to negotiate in synchrony, adapting as 
decisions emerge before them in real-time. The members of a 
swarm don’t express static views, but continually assess and 
reassess their own unique convictions with respect to each of 
the possible outcomes, weighing their personal confidence 
and preferences. With all participants doing this in parallel, 
the swarm can quickly converge on solutions that reflect the 
collective will of the group. We believe this is why swarms 
are able to efficiently capture a group’s collective wisdom. 

Of course we must also ponder why the group’s collective 
wisdom, once captured, yields results that are more accurate 
than those generated by the majority of individual 
participants. Observations and post-testing interviews suggest 
two possibilities: (a) knowledge mixing and (b) heuristics 
mixing. With respect to the former, when participants have 
incomplete knowledge with which to make a decision, the 
swarming process seems to enable the group to fill the gaps in 
each other’s knowledgebase such that the full system can 
reach an intelligent decision. This was most apparent when 
predicting the 2015 Academy Awards. None of the 
participants reported having seen all the films and most 
reported having seen only a select few. And yet, when 
working together as unified swarm, the group was able to fill 
in the gaps and make accurate predictions.  

With respect to heuristics, it is well-known in economics 
and psychology that when individuals are confronted with 
decisions involving many alternatives, each with numerous 
attributes to evaluate, they resort to simplified heuristics as a 
way to keep the process manageable. In the case of the 
Academy Awards, some users relied on the “media buzz” 
around certain films, while others drew upon their perceptions 
of box-office success, the acclaim of well-known actors or 
directors, or their own personal enjoyment of the film. While 
no single heuristic would have likely yielded an accurate 
result -- as each is an overly simplified method by which to 
make the prediction -- the swarming process allowed the 
group to combine their heuristics with positive results. This 
may be because swarming enabled the users to not only 
combine their individual heuristics, but also weight their input 
based on their own personal confidence and conviction.   

Because of the potential of human swarming to enable 
groups to merge their knowledge and heuristics, swarming 
likely offers the greatest benefit when groups make complex 
decisions on topics where individual knowledge is limited and 
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where the decision involves multiple options, each of which 
having multiple attributes that impact favorability. Not 
surprisingly, this is exactly the type of problem for which 
swarming evolved in honeybees. When honeybee swarms 
choose a new colony site, they consider an average of 24 
different locations, each evaluated with respect to at least six 
independent attributes. Despite the complexity of the 
decisions involved, honeybee swarms have been documented 
as making nearly optimal decisions most of the time [9]. 

Going forward we aim to evaluate if human swarms can 
achieve similarly optimal outcomes when confronted with 
complex decisions. Of particular interest is whether the 
decisions produced by human swarms result in greater group 
satisfaction than decisions reached by traditional votes and 
polls. In addition, to support the study of human swarming, 
we have made the UNU platform available to all academic 
researchers who wish to run their own swarming experiments. 
To request access, visit: www.unanimousai.com.   
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people-guessed-the-weight-of-a-cow-heres-how-they-did 
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